MakeItFrom.com
Menu (ESC)

N08366 Stainless Steel vs. EN 1.4611 Stainless Steel

Both N08366 stainless steel and EN 1.4611 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 69% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N08366 stainless steel and the bottom bar is EN 1.4611 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
180
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 34
21
Fatigue Strength, MPa 190
180
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 80
78
Shear Strength, MPa 390
330
Tensile Strength: Ultimate (UTS), MPa 590
530
Tensile Strength: Yield (Proof), MPa 240
280

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 430
530
Maximum Temperature: Mechanical, °C 1100
970
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 13
21
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 33
11
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 6.2
2.5
Embodied Energy, MJ/kg 84
36
Embodied Water, L/kg 200
140

Common Calculations

PREN (Pitting Resistance) 42
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
91
Resilience: Unit (Modulus of Resilience), kJ/m3 150
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
19
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 3.4
5.7
Thermal Shock Resistance, points 13
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0 to 0.035
0 to 0.030
Chromium (Cr), % 20 to 22
19 to 22
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 42.4 to 50.5
73.3 to 80.8
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 6.0 to 7.0
0 to 0.5
Nickel (Ni), % 23.5 to 25.5
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.050
Titanium (Ti), % 0
0.2 to 1.0