MakeItFrom.com
Menu (ESC)

N08366 Stainless Steel vs. Grade Ti-Pd18 Titanium

N08366 stainless steel belongs to the iron alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N08366 stainless steel and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
320
Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 34
17
Fatigue Strength, MPa 190
350
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 590
710
Tensile Strength: Yield (Proof), MPa 240
540

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1100
330
Melting Completion (Liquidus), °C 1460
1640
Melting Onset (Solidus), °C 1410
1590
Specific Heat Capacity, J/kg-K 460
550
Thermal Conductivity, W/m-K 13
8.2
Thermal Expansion, µm/m-K 16
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.7

Otherwise Unclassified Properties

Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 6.2
41
Embodied Energy, MJ/kg 84
670
Embodied Water, L/kg 200
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
1380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 20
44
Strength to Weight: Bending, points 19
39
Thermal Diffusivity, mm2/s 3.4
3.3
Thermal Shock Resistance, points 13
52

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.035
0 to 0.1
Chromium (Cr), % 20 to 22
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 42.4 to 50.5
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 23.5 to 25.5
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4