MakeItFrom.com
Menu (ESC)

N08366 Stainless Steel vs. Titanium 15-3-3-3

N08366 stainless steel belongs to the iron alloys classification, while titanium 15-3-3-3 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08366 stainless steel and the bottom bar is titanium 15-3-3-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 34
5.7 to 8.0
Fatigue Strength, MPa 190
610 to 710
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
39
Shear Strength, MPa 390
660 to 810
Tensile Strength: Ultimate (UTS), MPa 590
1120 to 1390
Tensile Strength: Yield (Proof), MPa 240
1100 to 1340

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1100
430
Melting Completion (Liquidus), °C 1460
1620
Melting Onset (Solidus), °C 1410
1560
Specific Heat Capacity, J/kg-K 460
520
Thermal Conductivity, W/m-K 13
8.1
Thermal Expansion, µm/m-K 16
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
40
Density, g/cm3 8.1
4.8
Embodied Carbon, kg CO2/kg material 6.2
59
Embodied Energy, MJ/kg 84
950
Embodied Water, L/kg 200
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
78 to 89
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 24
32
Strength to Weight: Axial, points 20
64 to 80
Strength to Weight: Bending, points 19
50 to 57
Thermal Diffusivity, mm2/s 3.4
3.2
Thermal Shock Resistance, points 13
79 to 98

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.035
0 to 0.050
Chromium (Cr), % 20 to 22
2.5 to 3.5
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 42.4 to 50.5
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 23.5 to 25.5
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
2.5 to 3.5
Titanium (Ti), % 0
72.6 to 78.5
Vanadium (V), % 0
14 to 16
Residuals, % 0
0 to 0.4