MakeItFrom.com
Menu (ESC)

N08366 Stainless Steel vs. C14700 Copper

N08366 stainless steel belongs to the iron alloys classification, while C14700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08366 stainless steel and the bottom bar is C14700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 34
9.1 to 35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 80
43
Shear Strength, MPa 390
160 to 190
Tensile Strength: Ultimate (UTS), MPa 590
240 to 320
Tensile Strength: Yield (Proof), MPa 240
85 to 250

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1410
1070
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 13
370
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
95
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
96

Otherwise Unclassified Properties

Base Metal Price, % relative 33
30
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 6.2
2.6
Embodied Energy, MJ/kg 84
41
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
25 to 65
Resilience: Unit (Modulus of Resilience), kJ/m3 150
31 to 280
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
7.3 to 10
Strength to Weight: Bending, points 19
9.5 to 12
Thermal Diffusivity, mm2/s 3.4
110
Thermal Shock Resistance, points 13
8.4 to 12

Alloy Composition

Carbon (C), % 0 to 0.035
0
Chromium (Cr), % 20 to 22
0
Copper (Cu), % 0
99.395 to 99.798
Iron (Fe), % 42.4 to 50.5
0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 23.5 to 25.5
0
Phosphorus (P), % 0 to 0.040
0.0020 to 0.0050
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0.2 to 0.5
Residuals, % 0
0 to 0.1