MakeItFrom.com
Menu (ESC)

N08366 Stainless Steel vs. C65500 Bronze

N08366 stainless steel belongs to the iron alloys classification, while C65500 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08366 stainless steel and the bottom bar is C65500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 34
4.0 to 70
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 82
62 to 97
Shear Modulus, GPa 80
43
Shear Strength, MPa 390
260 to 440
Tensile Strength: Ultimate (UTS), MPa 590
360 to 760
Tensile Strength: Yield (Proof), MPa 240
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 310
260
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1460
1030
Melting Onset (Solidus), °C 1410
970
Specific Heat Capacity, J/kg-K 460
400
Thermal Conductivity, W/m-K 13
36
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
29
Density, g/cm3 8.1
8.6
Embodied Carbon, kg CO2/kg material 6.2
2.7
Embodied Energy, MJ/kg 84
42
Embodied Water, L/kg 200
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
11 to 450
Resilience: Unit (Modulus of Resilience), kJ/m3 150
62 to 790
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
12 to 24
Strength to Weight: Bending, points 19
13 to 21
Thermal Diffusivity, mm2/s 3.4
10
Thermal Shock Resistance, points 13
12 to 26

Alloy Composition

Carbon (C), % 0 to 0.035
0
Chromium (Cr), % 20 to 22
0
Copper (Cu), % 0
91.5 to 96.7
Iron (Fe), % 42.4 to 50.5
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0.5 to 1.3
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 23.5 to 25.5
0 to 0.6
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
2.8 to 3.8
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5