MakeItFrom.com
Menu (ESC)

N08366 Stainless Steel vs. C86200 Bronze

N08366 stainless steel belongs to the iron alloys classification, while C86200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N08366 stainless steel and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 34
21
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 590
710
Tensile Strength: Yield (Proof), MPa 240
350

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1460
940
Melting Onset (Solidus), °C 1410
900
Specific Heat Capacity, J/kg-K 460
410
Thermal Conductivity, W/m-K 13
35
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 33
23
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 6.2
2.9
Embodied Energy, MJ/kg 84
49
Embodied Water, L/kg 200
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
120
Resilience: Unit (Modulus of Resilience), kJ/m3 150
540
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 3.4
11
Thermal Shock Resistance, points 13
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Carbon (C), % 0 to 0.035
0
Chromium (Cr), % 20 to 22
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 42.4 to 50.5
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
2.5 to 5.0
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 23.5 to 25.5
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0