MakeItFrom.com
Menu (ESC)

N08367 Stainless Steel vs. EN 1.4523 Stainless Steel

Both N08367 stainless steel and EN 1.4523 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 67% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N08367 stainless steel and the bottom bar is EN 1.4523 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
180
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 34
17
Fatigue Strength, MPa 280
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
78
Shear Strength, MPa 490
320
Tensile Strength: Ultimate (UTS), MPa 740
520
Tensile Strength: Yield (Proof), MPa 350
320

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 430
500
Maximum Temperature: Mechanical, °C 1100
920
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 12
22
Thermal Expansion, µm/m-K 15
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 33
12
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 6.2
2.9
Embodied Energy, MJ/kg 84
40
Embodied Water, L/kg 200
130

Common Calculations

PREN (Pitting Resistance) 46
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
77
Resilience: Unit (Modulus of Resilience), kJ/m3 290
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
18
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 3.2
5.8
Thermal Shock Resistance, points 17
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 20 to 22
17.5 to 19
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 41.4 to 50.3
75.7 to 80.2
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 6.0 to 7.0
2.0 to 2.5
Nickel (Ni), % 23.5 to 25.5
0
Nitrogen (N), % 0.18 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0.15 to 0.35
Titanium (Ti), % 0
0.15 to 0.8