MakeItFrom.com
Menu (ESC)

N08367 Stainless Steel vs. EN 1.4558 Stainless Steel

Both N08367 stainless steel and EN 1.4558 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N08367 stainless steel and the bottom bar is EN 1.4558 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 34
39
Fatigue Strength, MPa 280
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 490
350
Tensile Strength: Ultimate (UTS), MPa 740
510
Tensile Strength: Yield (Proof), MPa 350
200

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Corrosion, °C 430
480
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1410
1350
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 12
12
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 33
31
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 6.2
5.5
Embodied Energy, MJ/kg 84
77
Embodied Water, L/kg 200
200

Common Calculations

PREN (Pitting Resistance) 46
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
160
Resilience: Unit (Modulus of Resilience), kJ/m3 290
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
18
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 3.2
3.1
Thermal Shock Resistance, points 17
12

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.45
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 20 to 22
20 to 23
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 41.4 to 50.3
39.2 to 47.9
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 23.5 to 25.5
32 to 35
Nitrogen (N), % 0.18 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0 to 0.6