MakeItFrom.com
Menu (ESC)

N08367 Stainless Steel vs. S31060 Stainless Steel

Both N08367 stainless steel and S31060 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 79% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N08367 stainless steel and the bottom bar is S31060 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
190
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 34
46
Fatigue Strength, MPa 280
290
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 88
82
Shear Modulus, GPa 80
78
Shear Strength, MPa 490
480
Tensile Strength: Ultimate (UTS), MPa 740
680
Tensile Strength: Yield (Proof), MPa 350
310

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 430
440
Maximum Temperature: Mechanical, °C 1100
1080
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1410
1370
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 33
18
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.2
3.4
Embodied Energy, MJ/kg 84
48
Embodied Water, L/kg 200
170

Common Calculations

PREN (Pitting Resistance) 46
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
260
Resilience: Unit (Modulus of Resilience), kJ/m3 290
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 3.2
4.0
Thermal Shock Resistance, points 17
15

Alloy Composition

Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0 to 0.030
0.050 to 0.1
Cerium (Ce), % 0
0 to 0.070
Chromium (Cr), % 20 to 22
22 to 24
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 41.4 to 50.3
61.4 to 67.8
Lanthanum (La), % 0
0 to 0.070
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 23.5 to 25.5
10 to 12.5
Nitrogen (N), % 0.18 to 0.25
0.18 to 0.25
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.030