MakeItFrom.com
Menu (ESC)

N08535 Stainless Steel vs. C83300 Brass

N08535 stainless steel belongs to the iron alloys classification, while C83300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08535 stainless steel and the bottom bar is C83300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 46
35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 570
220
Tensile Strength: Yield (Proof), MPa 240
69

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1420
1060
Melting Onset (Solidus), °C 1370
1030
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 13
160
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
32
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
33

Otherwise Unclassified Properties

Base Metal Price, % relative 36
30
Density, g/cm3 8.1
8.8
Embodied Carbon, kg CO2/kg material 6.3
2.7
Embodied Energy, MJ/kg 87
44
Embodied Water, L/kg 230
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
60
Resilience: Unit (Modulus of Resilience), kJ/m3 140
21
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
6.9
Strength to Weight: Bending, points 19
9.2
Thermal Diffusivity, mm2/s 3.3
48
Thermal Shock Resistance, points 13
7.9

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 27
0
Copper (Cu), % 0 to 1.5
92 to 94
Iron (Fe), % 29.4 to 44.5
0
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 29 to 36.5
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.0 to 2.0
Zinc (Zn), % 0
2.0 to 6.0
Residuals, % 0
0 to 0.7