MakeItFrom.com
Menu (ESC)

N08535 Stainless Steel vs. C84400 Valve Metal

N08535 stainless steel belongs to the iron alloys classification, while C84400 valve metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08535 stainless steel and the bottom bar is C84400 valve metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 46
19
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 80
39
Tensile Strength: Ultimate (UTS), MPa 570
230
Tensile Strength: Yield (Proof), MPa 240
110

Thermal Properties

Latent Heat of Fusion, J/g 310
180
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1420
1000
Melting Onset (Solidus), °C 1370
840
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 13
72
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
16
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
17

Otherwise Unclassified Properties

Base Metal Price, % relative 36
29
Density, g/cm3 8.1
8.8
Embodied Carbon, kg CO2/kg material 6.3
2.8
Embodied Energy, MJ/kg 87
46
Embodied Water, L/kg 230
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
36
Resilience: Unit (Modulus of Resilience), kJ/m3 140
58
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
7.2
Strength to Weight: Bending, points 19
9.4
Thermal Diffusivity, mm2/s 3.3
22
Thermal Shock Resistance, points 13
8.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 27
0
Copper (Cu), % 0 to 1.5
78 to 82
Iron (Fe), % 29.4 to 44.5
0 to 0.4
Lead (Pb), % 0
6.0 to 8.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 29 to 36.5
0 to 1.0
Phosphorus (P), % 0 to 0.030
0 to 1.5
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
2.3 to 3.5
Zinc (Zn), % 0
7.0 to 10
Residuals, % 0
0 to 0.7