MakeItFrom.com
Menu (ESC)

N08700 Stainless Steel vs. EN 1.4438 Stainless Steel

Both N08700 stainless steel and EN 1.4438 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N08700 stainless steel and the bottom bar is EN 1.4438 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 32
41
Fatigue Strength, MPa 210
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 79
79
Shear Strength, MPa 410
420
Tensile Strength: Ultimate (UTS), MPa 620
620
Tensile Strength: Yield (Proof), MPa 270
250

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 460
420
Maximum Temperature: Mechanical, °C 1100
1000
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 13
14
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 32
22
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 6.0
4.4
Embodied Energy, MJ/kg 82
60
Embodied Water, L/kg 200
160

Common Calculations

PREN (Pitting Resistance) 36
31
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
200
Resilience: Unit (Modulus of Resilience), kJ/m3 180
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 3.5
3.7
Thermal Shock Resistance, points 14
14

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.030
Chromium (Cr), % 19 to 23
17.5 to 19.5
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 42 to 52.7
57.3 to 66.5
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 4.3 to 5.0
3.0 to 4.0
Nickel (Ni), % 24 to 26
13 to 16
Niobium (Nb), % 0 to 0.4
0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015