MakeItFrom.com
Menu (ESC)

N08700 Stainless Steel vs. CC334G Bronze

N08700 stainless steel belongs to the iron alloys classification, while CC334G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N08700 stainless steel and the bottom bar is CC334G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
210
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 32
5.6
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
45
Tensile Strength: Ultimate (UTS), MPa 620
810
Tensile Strength: Yield (Proof), MPa 270
410

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Maximum Temperature: Mechanical, °C 1100
240
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1400
1020
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 13
41
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 32
29
Density, g/cm3 8.1
8.2
Embodied Carbon, kg CO2/kg material 6.0
3.6
Embodied Energy, MJ/kg 82
59
Embodied Water, L/kg 200
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
38
Resilience: Unit (Modulus of Resilience), kJ/m3 180
710
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 21
28
Strength to Weight: Bending, points 20
24
Thermal Diffusivity, mm2/s 3.5
11
Thermal Shock Resistance, points 14
28

Alloy Composition

Aluminum (Al), % 0
10 to 12
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.5
72 to 84.5
Iron (Fe), % 42 to 52.7
3.0 to 7.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 2.5
Molybdenum (Mo), % 4.3 to 5.0
0
Nickel (Ni), % 24 to 26
4.0 to 7.5
Niobium (Nb), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5