MakeItFrom.com
Menu (ESC)

N08700 Stainless Steel vs. CC483K Bronze

N08700 stainless steel belongs to the iron alloys classification, while CC483K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N08700 stainless steel and the bottom bar is CC483K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
97
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 32
6.4
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 620
310
Tensile Strength: Yield (Proof), MPa 270
170

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1450
990
Melting Onset (Solidus), °C 1400
870
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 13
68
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
10
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
10

Otherwise Unclassified Properties

Base Metal Price, % relative 32
36
Density, g/cm3 8.1
8.7
Embodied Carbon, kg CO2/kg material 6.0
3.8
Embodied Energy, MJ/kg 82
62
Embodied Water, L/kg 200
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
17
Resilience: Unit (Modulus of Resilience), kJ/m3 180
130
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 21
9.9
Strength to Weight: Bending, points 20
12
Thermal Diffusivity, mm2/s 3.5
21
Thermal Shock Resistance, points 14
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.15
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.5
85 to 89
Iron (Fe), % 42 to 52.7
0 to 0.2
Lead (Pb), % 0
0 to 0.7
Manganese (Mn), % 0 to 2.0
0 to 0.2
Molybdenum (Mo), % 4.3 to 5.0
0
Nickel (Ni), % 24 to 26
0 to 2.0
Niobium (Nb), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.040
0 to 0.6
Silicon (Si), % 0 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
10.5 to 13
Zinc (Zn), % 0
0 to 0.5