MakeItFrom.com
Menu (ESC)

N08700 Stainless Steel vs. C68100 Brass

N08700 stainless steel belongs to the iron alloys classification, while C68100 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is N08700 stainless steel and the bottom bar is C68100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 32
29
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 620
380
Tensile Strength: Yield (Proof), MPa 270
140

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1450
890
Melting Onset (Solidus), °C 1400
870
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 13
98
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
24
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
27

Otherwise Unclassified Properties

Base Metal Price, % relative 32
23
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 6.0
2.8
Embodied Energy, MJ/kg 82
47
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
86
Resilience: Unit (Modulus of Resilience), kJ/m3 180
94
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 21
13
Strength to Weight: Bending, points 20
15
Thermal Diffusivity, mm2/s 3.5
32
Thermal Shock Resistance, points 14
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.5
56 to 60
Iron (Fe), % 42 to 52.7
0.25 to 1.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0.010 to 0.5
Molybdenum (Mo), % 4.3 to 5.0
0
Nickel (Ni), % 24 to 26
0
Niobium (Nb), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.040 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.75 to 1.1
Zinc (Zn), % 0
36.4 to 43
Residuals, % 0
0 to 0.5