MakeItFrom.com
Menu (ESC)

N08700 Stainless Steel vs. C92600 Bronze

N08700 stainless steel belongs to the iron alloys classification, while C92600 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N08700 stainless steel and the bottom bar is C92600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
70
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 32
30
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 620
300
Tensile Strength: Yield (Proof), MPa 270
140

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1450
980
Melting Onset (Solidus), °C 1400
840
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 13
67
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 32
34
Density, g/cm3 8.1
8.7
Embodied Carbon, kg CO2/kg material 6.0
3.6
Embodied Energy, MJ/kg 82
58
Embodied Water, L/kg 200
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
74
Resilience: Unit (Modulus of Resilience), kJ/m3 180
88
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 21
9.6
Strength to Weight: Bending, points 20
11
Thermal Diffusivity, mm2/s 3.5
21
Thermal Shock Resistance, points 14
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.5
86 to 88.5
Iron (Fe), % 42 to 52.7
0 to 0.2
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 4.3 to 5.0
0
Nickel (Ni), % 24 to 26
0 to 0.7
Niobium (Nb), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
9.3 to 10.5
Zinc (Zn), % 0
1.3 to 2.5
Residuals, % 0
0 to 0.7