MakeItFrom.com
Menu (ESC)

N08700 Stainless Steel vs. S20432 Stainless Steel

Both N08700 stainless steel and S20432 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 72% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N08700 stainless steel and the bottom bar is S20432 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 32
45
Fatigue Strength, MPa 210
210
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 81
81
Shear Modulus, GPa 79
76
Shear Strength, MPa 410
400
Tensile Strength: Ultimate (UTS), MPa 620
580
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 460
410
Maximum Temperature: Mechanical, °C 1100
900
Melting Completion (Liquidus), °C 1450
1410
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 13
15
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 32
13
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.0
2.7
Embodied Energy, MJ/kg 82
38
Embodied Water, L/kg 200
140

Common Calculations

PREN (Pitting Resistance) 36
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
210
Resilience: Unit (Modulus of Resilience), kJ/m3 180
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 3.5
4.0
Thermal Shock Resistance, points 14
13

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.080
Chromium (Cr), % 19 to 23
17 to 18
Copper (Cu), % 0 to 0.5
2.0 to 3.0
Iron (Fe), % 42 to 52.7
66.7 to 74
Manganese (Mn), % 0 to 2.0
3.0 to 5.0
Molybdenum (Mo), % 4.3 to 5.0
0
Nickel (Ni), % 24 to 26
4.0 to 6.0
Niobium (Nb), % 0 to 0.4
0
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030