MakeItFrom.com
Menu (ESC)

N08700 Stainless Steel vs. S41041 Stainless Steel

Both N08700 stainless steel and S41041 stainless steel are iron alloys. They have 61% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N08700 stainless steel and the bottom bar is S41041 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
240
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 32
17
Fatigue Strength, MPa 210
350
Poisson's Ratio 0.28
0.28
Reduction in Area, % 45
56
Shear Modulus, GPa 79
76
Shear Strength, MPa 410
560
Tensile Strength: Ultimate (UTS), MPa 620
910
Tensile Strength: Yield (Proof), MPa 270
580

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Corrosion, °C 460
430
Maximum Temperature: Mechanical, °C 1100
740
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 13
29
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 32
8.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.0
2.2
Embodied Energy, MJ/kg 82
31
Embodied Water, L/kg 200
100

Common Calculations

PREN (Pitting Resistance) 36
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
140
Resilience: Unit (Modulus of Resilience), kJ/m3 180
860
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21
32
Strength to Weight: Bending, points 20
27
Thermal Diffusivity, mm2/s 3.5
7.8
Thermal Shock Resistance, points 14
33

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0 to 0.040
0.13 to 0.18
Chromium (Cr), % 19 to 23
11.5 to 13
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 42 to 52.7
84.5 to 87.8
Manganese (Mn), % 0 to 2.0
0.4 to 0.6
Molybdenum (Mo), % 4.3 to 5.0
0 to 0.2
Nickel (Ni), % 24 to 26
0 to 0.5
Niobium (Nb), % 0 to 0.4
0.15 to 0.45
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.030