MakeItFrom.com
Menu (ESC)

N08700 Stainless Steel vs. S41050 Stainless Steel

Both N08700 stainless steel and S41050 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 61% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N08700 stainless steel and the bottom bar is S41050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 32
25
Fatigue Strength, MPa 210
160
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 81
77
Shear Modulus, GPa 79
76
Shear Strength, MPa 410
300
Tensile Strength: Ultimate (UTS), MPa 620
470
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Corrosion, °C 460
390
Maximum Temperature: Mechanical, °C 1100
720
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 13
27
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 32
7.0
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.0
1.9
Embodied Energy, MJ/kg 82
27
Embodied Water, L/kg 200
97

Common Calculations

PREN (Pitting Resistance) 36
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
98
Resilience: Unit (Modulus of Resilience), kJ/m3 180
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21
17
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 3.5
7.2
Thermal Shock Resistance, points 14
17

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.040
Chromium (Cr), % 19 to 23
10.5 to 12.5
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 42 to 52.7
84.2 to 88.9
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 4.3 to 5.0
0
Nickel (Ni), % 24 to 26
0.6 to 1.1
Niobium (Nb), % 0 to 0.4
0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030