MakeItFrom.com
Menu (ESC)

N08800 Stainless Steel vs. EN 1.4590 Stainless Steel

Both N08800 stainless steel and EN 1.4590 stainless steel are iron alloys. They have 63% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N08800 stainless steel and the bottom bar is EN 1.4590 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 4.5 to 34
26
Fatigue Strength, MPa 150 to 390
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 340 to 580
310
Tensile Strength: Ultimate (UTS), MPa 500 to 1000
480
Tensile Strength: Yield (Proof), MPa 190 to 830
270

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 490
470
Maximum Temperature: Mechanical, °C 1100
860
Melting Completion (Liquidus), °C 1390
1440
Melting Onset (Solidus), °C 1360
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
26
Thermal Expansion, µm/m-K 14
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
11
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 5.3
2.5
Embodied Energy, MJ/kg 76
37
Embodied Water, L/kg 200
120

Common Calculations

PREN (Pitting Resistance) 21
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 96 to 1740
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18 to 35
17
Strength to Weight: Bending, points 18 to 28
18
Thermal Diffusivity, mm2/s 3.0
7.0
Thermal Shock Resistance, points 13 to 25
17

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 19 to 23
16 to 17.5
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 39.5 to 50.7
79.7 to 83.7
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 30 to 35
0
Niobium (Nb), % 0
0.35 to 0.55
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0.15 to 0.6
0
Zirconium (Zr), % 0
0 to 0.15