MakeItFrom.com
Menu (ESC)

N08800 Stainless Steel vs. EN 1.4988 Stainless Steel

Both N08800 stainless steel and EN 1.4988 stainless steel are iron alloys. They have 76% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N08800 stainless steel and the bottom bar is EN 1.4988 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 4.5 to 34
34
Fatigue Strength, MPa 150 to 390
230
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 340 to 580
430
Tensile Strength: Ultimate (UTS), MPa 500 to 1000
640
Tensile Strength: Yield (Proof), MPa 190 to 830
290

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 490
520
Maximum Temperature: Mechanical, °C 1100
920
Melting Completion (Liquidus), °C 1390
1450
Melting Onset (Solidus), °C 1360
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 14
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
23
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 5.3
6.0
Embodied Energy, MJ/kg 76
89
Embodied Water, L/kg 200
150

Common Calculations

PREN (Pitting Resistance) 21
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 160
180
Resilience: Unit (Modulus of Resilience), kJ/m3 96 to 1740
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18 to 35
23
Strength to Weight: Bending, points 18 to 28
21
Thermal Diffusivity, mm2/s 3.0
4.0
Thermal Shock Resistance, points 13 to 25
14

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0 to 0.1
0.040 to 0.1
Chromium (Cr), % 19 to 23
15.5 to 17.5
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 39.5 to 50.7
62.1 to 69.5
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
1.1 to 1.5
Nickel (Ni), % 30 to 35
12.5 to 14.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 1.0
0.3 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0.15 to 0.6
0
Vanadium (V), % 0
0.6 to 0.85