MakeItFrom.com
Menu (ESC)

N08800 Stainless Steel vs. EN 1.8893 Steel

Both N08800 stainless steel and EN 1.8893 steel are iron alloys. They have 47% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08800 stainless steel and the bottom bar is EN 1.8893 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 4.5 to 34
16
Fatigue Strength, MPa 150 to 390
470
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 340 to 580
510
Tensile Strength: Ultimate (UTS), MPa 500 to 1000
830
Tensile Strength: Yield (Proof), MPa 190 to 830
720

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1390
1460
Melting Onset (Solidus), °C 1360
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
40
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.9
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.3
1.7
Embodied Energy, MJ/kg 76
23
Embodied Water, L/kg 200
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 160
130
Resilience: Unit (Modulus of Resilience), kJ/m3 96 to 1740
1370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18 to 35
29
Strength to Weight: Bending, points 18 to 28
25
Thermal Diffusivity, mm2/s 3.0
11
Thermal Shock Resistance, points 13 to 25
24

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0.020 to 0.060
Carbon (C), % 0 to 0.1
0 to 0.2
Chromium (Cr), % 19 to 23
0 to 0.3
Copper (Cu), % 0 to 0.75
0 to 0.2
Iron (Fe), % 39.5 to 50.7
95.6 to 98
Manganese (Mn), % 0 to 1.5
1.4 to 1.7
Molybdenum (Mo), % 0
0.3 to 0.45
Nickel (Ni), % 30 to 35
0.3 to 0.7
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.025
Titanium (Ti), % 0.15 to 0.6
0 to 0.050
Vanadium (V), % 0
0 to 0.12