MakeItFrom.com
Menu (ESC)

N08800 Stainless Steel vs. EN AC-41000 Aluminum

N08800 stainless steel belongs to the iron alloys classification, while EN AC-41000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08800 stainless steel and the bottom bar is EN AC-41000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 4.5 to 34
4.5
Fatigue Strength, MPa 150 to 390
58 to 71
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 500 to 1000
170 to 280
Tensile Strength: Yield (Proof), MPa 190 to 830
80 to 210

Thermal Properties

Latent Heat of Fusion, J/g 300
420
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1360
630
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
170
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
130

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 5.3
8.2
Embodied Energy, MJ/kg 76
150
Embodied Water, L/kg 200
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 160
6.4 to 11
Resilience: Unit (Modulus of Resilience), kJ/m3 96 to 1740
46 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 18 to 35
18 to 29
Strength to Weight: Bending, points 18 to 28
26 to 35
Thermal Diffusivity, mm2/s 3.0
69
Thermal Shock Resistance, points 13 to 25
7.8 to 13

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
95.2 to 97.6
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.75
0 to 0.1
Iron (Fe), % 39.5 to 50.7
0 to 0.6
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0 to 1.5
0.3 to 0.5
Nickel (Ni), % 30 to 35
0 to 0.050
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
1.6 to 2.4
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0.15 to 0.6
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15