MakeItFrom.com
Menu (ESC)

N08800 Stainless Steel vs. EN AC-48100 Aluminum

N08800 stainless steel belongs to the iron alloys classification, while EN AC-48100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N08800 stainless steel and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
76
Elongation at Break, % 4.5 to 34
1.1
Fatigue Strength, MPa 150 to 390
120 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
29
Tensile Strength: Ultimate (UTS), MPa 500 to 1000
240 to 330
Tensile Strength: Yield (Proof), MPa 190 to 830
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 300
640
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1390
580
Melting Onset (Solidus), °C 1360
470
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 14
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
27
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
87

Otherwise Unclassified Properties

Base Metal Price, % relative 30
11
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 5.3
7.3
Embodied Energy, MJ/kg 76
130
Embodied Water, L/kg 200
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 160
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 96 to 1740
250 to 580
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 18 to 35
24 to 33
Strength to Weight: Bending, points 18 to 28
31 to 38
Thermal Diffusivity, mm2/s 3.0
55
Thermal Shock Resistance, points 13 to 25
11 to 16

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
72.1 to 79.8
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.75
4.0 to 5.0
Iron (Fe), % 39.5 to 50.7
0 to 1.3
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0 to 1.5
0 to 0.5
Nickel (Ni), % 30 to 35
0 to 0.3
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
16 to 18
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0.15 to 0.6
0 to 0.25
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.25