MakeItFrom.com
Menu (ESC)

N08800 Stainless Steel vs. CC493K Bronze

N08800 stainless steel belongs to the iron alloys classification, while CC493K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N08800 stainless steel and the bottom bar is CC493K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 4.5 to 34
14
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
39
Tensile Strength: Ultimate (UTS), MPa 500 to 1000
270
Tensile Strength: Yield (Proof), MPa 190 to 830
140

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1390
960
Melting Onset (Solidus), °C 1360
880
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 12
61
Thermal Expansion, µm/m-K 14
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
12

Otherwise Unclassified Properties

Base Metal Price, % relative 30
32
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 5.3
3.3
Embodied Energy, MJ/kg 76
53
Embodied Water, L/kg 200
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 160
33
Resilience: Unit (Modulus of Resilience), kJ/m3 96 to 1740
89
Stiffness to Weight: Axial, points 14
6.5
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 18 to 35
8.6
Strength to Weight: Bending, points 18 to 28
11
Thermal Diffusivity, mm2/s 3.0
19
Thermal Shock Resistance, points 13 to 25
10

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.75
79 to 86
Iron (Fe), % 39.5 to 50.7
0 to 0.2
Lead (Pb), % 0
5.0 to 8.0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 30 to 35
0 to 2.0
Phosphorus (P), % 0 to 0.045
0 to 0.1
Silicon (Si), % 0 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.015
0 to 0.1
Tin (Sn), % 0
5.2 to 8.0
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
2.0 to 5.0