MakeItFrom.com
Menu (ESC)

N08800 Stainless Steel vs. C86300 Bronze

N08800 stainless steel belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N08800 stainless steel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 4.5 to 34
14
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 500 to 1000
850
Tensile Strength: Yield (Proof), MPa 190 to 830
480

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1390
920
Melting Onset (Solidus), °C 1360
890
Specific Heat Capacity, J/kg-K 480
420
Thermal Conductivity, W/m-K 12
35
Thermal Expansion, µm/m-K 14
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 30
23
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.3
3.0
Embodied Energy, MJ/kg 76
51
Embodied Water, L/kg 200
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 160
100
Resilience: Unit (Modulus of Resilience), kJ/m3 96 to 1740
1030
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 18 to 35
30
Strength to Weight: Bending, points 18 to 28
25
Thermal Diffusivity, mm2/s 3.0
11
Thermal Shock Resistance, points 13 to 25
28

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
5.0 to 7.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.75
60 to 66
Iron (Fe), % 39.5 to 50.7
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.5
2.5 to 5.0
Nickel (Ni), % 30 to 35
0 to 1.0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0