MakeItFrom.com
Menu (ESC)

N08801 Stainless Steel vs. CR015A Copper

N08801 stainless steel belongs to the iron alloys classification, while CR015A copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08801 stainless steel and the bottom bar is CR015A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Tensile Strength: Ultimate (UTS), MPa 860
220
Tensile Strength: Yield (Proof), MPa 190
130

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1090
200
Melting Completion (Liquidus), °C 1390
1090
Melting Onset (Solidus), °C 1360
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
390
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
98
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
99

Otherwise Unclassified Properties

Base Metal Price, % relative 30
33
Density, g/cm3 8.0
9.0
Embodied Carbon, kg CO2/kg material 5.5
2.7
Embodied Energy, MJ/kg 79
42
Embodied Water, L/kg 200
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
29
Resilience: Unit (Modulus of Resilience), kJ/m3 92
76
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 30
6.8
Strength to Weight: Bending, points 25
9.0
Thermal Diffusivity, mm2/s 3.3
110
Thermal Shock Resistance, points 20
7.8

Alloy Composition

Bismuth (Bi), % 0
0 to 0.00050
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0 to 0.5
99.883 to 99.939
Iron (Fe), % 39.5 to 50.3
0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 30 to 34
0
Phosphorus (P), % 0
0.0010 to 0.0070
Silicon (Si), % 0 to 1.0
0
Silver (Ag), % 0
0.060 to 0.080
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.75 to 1.5
0