MakeItFrom.com
Menu (ESC)

N08801 Stainless Steel vs. Grade 6 Titanium

N08801 stainless steel belongs to the iron alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N08801 stainless steel and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34
11
Fatigue Strength, MPa 260
290
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
39
Shear Strength, MPa 570
530
Tensile Strength: Ultimate (UTS), MPa 860
890
Tensile Strength: Yield (Proof), MPa 190
840

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1090
310
Melting Completion (Liquidus), °C 1390
1580
Melting Onset (Solidus), °C 1360
1530
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 12
7.8
Thermal Expansion, µm/m-K 16
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
36
Density, g/cm3 8.0
4.5
Embodied Carbon, kg CO2/kg material 5.5
30
Embodied Energy, MJ/kg 79
480
Embodied Water, L/kg 200
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
92
Resilience: Unit (Modulus of Resilience), kJ/m3 92
3390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 30
55
Strength to Weight: Bending, points 25
46
Thermal Diffusivity, mm2/s 3.3
3.2
Thermal Shock Resistance, points 20
65

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 39.5 to 50.3
0 to 0.5
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 30 to 34
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0.75 to 1.5
89.8 to 94
Residuals, % 0
0 to 0.4