MakeItFrom.com
Menu (ESC)

N08801 Stainless Steel vs. C36000 Brass

N08801 stainless steel belongs to the iron alloys classification, while C36000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N08801 stainless steel and the bottom bar is C36000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34
5.8 to 23
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
39
Shear Strength, MPa 570
210 to 310
Tensile Strength: Ultimate (UTS), MPa 860
330 to 530
Tensile Strength: Yield (Proof), MPa 190
140 to 260

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1090
120
Melting Completion (Liquidus), °C 1390
900
Melting Onset (Solidus), °C 1360
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
29

Otherwise Unclassified Properties

Base Metal Price, % relative 30
23
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 5.5
2.6
Embodied Energy, MJ/kg 79
45
Embodied Water, L/kg 200
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
25 to 62
Resilience: Unit (Modulus of Resilience), kJ/m3 92
89 to 340
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 30
11 to 18
Strength to Weight: Bending, points 25
13 to 18
Thermal Diffusivity, mm2/s 3.3
37
Thermal Shock Resistance, points 20
11 to 18

Alloy Composition

Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0 to 0.5
60 to 63
Iron (Fe), % 39.5 to 50.3
0 to 0.35
Lead (Pb), % 0
2.5 to 3.7
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 30 to 34
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.75 to 1.5
0
Zinc (Zn), % 0
32.5 to 37.5
Residuals, % 0
0 to 0.5