MakeItFrom.com
Menu (ESC)

N08801 Stainless Steel vs. C68400 Brass

N08801 stainless steel belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08801 stainless steel and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
18
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
41
Shear Strength, MPa 570
330
Tensile Strength: Ultimate (UTS), MPa 860
540
Tensile Strength: Yield (Proof), MPa 190
310

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1090
130
Melting Completion (Liquidus), °C 1390
840
Melting Onset (Solidus), °C 1360
820
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 12
66
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
87
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
99

Otherwise Unclassified Properties

Base Metal Price, % relative 30
23
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 5.5
2.7
Embodied Energy, MJ/kg 79
47
Embodied Water, L/kg 200
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
81
Resilience: Unit (Modulus of Resilience), kJ/m3 92
460
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 30
19
Strength to Weight: Bending, points 25
19
Thermal Diffusivity, mm2/s 3.3
21
Thermal Shock Resistance, points 20
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0.0010 to 0.030
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0 to 0.5
59 to 64
Iron (Fe), % 39.5 to 50.3
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.5
0.2 to 1.5
Nickel (Ni), % 30 to 34
0 to 0.5
Phosphorus (P), % 0
0.030 to 0.3
Silicon (Si), % 0 to 1.0
1.5 to 2.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.5
Titanium (Ti), % 0.75 to 1.5
0
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5