MakeItFrom.com
Menu (ESC)

N08801 Stainless Steel vs. C70700 Copper-nickel

N08801 stainless steel belongs to the iron alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08801 stainless steel and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
39
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
46
Shear Strength, MPa 570
220
Tensile Strength: Ultimate (UTS), MPa 860
320
Tensile Strength: Yield (Proof), MPa 190
110

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Maximum Temperature: Mechanical, °C 1090
220
Melting Completion (Liquidus), °C 1390
1120
Melting Onset (Solidus), °C 1360
1060
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
59
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
11
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
12

Otherwise Unclassified Properties

Base Metal Price, % relative 30
34
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 5.5
3.4
Embodied Energy, MJ/kg 79
52
Embodied Water, L/kg 200
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
100
Resilience: Unit (Modulus of Resilience), kJ/m3 92
51
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 30
10
Strength to Weight: Bending, points 25
12
Thermal Diffusivity, mm2/s 3.3
17
Thermal Shock Resistance, points 20
12

Alloy Composition

Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0 to 0.5
88.5 to 90.5
Iron (Fe), % 39.5 to 50.3
0 to 0.050
Manganese (Mn), % 0 to 1.5
0 to 0.5
Nickel (Ni), % 30 to 34
9.5 to 10.5
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.75 to 1.5
0
Residuals, % 0
0 to 0.5