MakeItFrom.com
Menu (ESC)

N08801 Stainless Steel vs. N08800 Stainless Steel

Both N08801 stainless steel and N08800 stainless steel are iron alloys. Their average alloy composition is basically identical. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N08801 stainless steel and the bottom bar is N08800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
4.5 to 34
Fatigue Strength, MPa 260
150 to 390
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 570
340 to 580
Tensile Strength: Ultimate (UTS), MPa 860
500 to 1000
Tensile Strength: Yield (Proof), MPa 190
190 to 830

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 630
490
Maximum Temperature: Mechanical, °C 1090
1100
Melting Completion (Liquidus), °C 1390
1390
Melting Onset (Solidus), °C 1360
1360
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
12
Thermal Expansion, µm/m-K 16
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 30
30
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 5.5
5.3
Embodied Energy, MJ/kg 79
76
Embodied Water, L/kg 200
200

Common Calculations

PREN (Pitting Resistance) 21
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
42 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 92
96 to 1740
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 30
18 to 35
Strength to Weight: Bending, points 25
18 to 28
Thermal Diffusivity, mm2/s 3.3
3.0
Thermal Shock Resistance, points 20
13 to 25

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0 to 0.1
0 to 0.1
Chromium (Cr), % 19 to 22
19 to 23
Copper (Cu), % 0 to 0.5
0 to 0.75
Iron (Fe), % 39.5 to 50.3
39.5 to 50.7
Manganese (Mn), % 0 to 1.5
0 to 1.5
Nickel (Ni), % 30 to 34
30 to 35
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0.75 to 1.5
0.15 to 0.6