MakeItFrom.com
Menu (ESC)

N08810 Stainless Steel vs. AWS E90C-B3

Both N08810 stainless steel and AWS E90C-B3 are iron alloys. They have 49% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08810 stainless steel and the bottom bar is AWS E90C-B3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 33
19
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 520
710
Tensile Strength: Yield (Proof), MPa 200
600

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1350
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
41
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
4.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.3
1.8
Embodied Energy, MJ/kg 76
24
Embodied Water, L/kg 200
59

Common Calculations

PREN (Pitting Resistance) 21
5.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
130
Resilience: Unit (Modulus of Resilience), kJ/m3 100
970
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
25
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 3.0
11
Thermal Shock Resistance, points 13
21

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0.050 to 0.1
0.050 to 0.12
Chromium (Cr), % 19 to 23
2.0 to 2.5
Copper (Cu), % 0 to 0.75
0 to 0.35
Iron (Fe), % 39.5 to 50.7
93.4 to 96.4
Manganese (Mn), % 0 to 1.5
0.4 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 30 to 35
0 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0.25 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.15 to 0.6
0
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5