MakeItFrom.com
Menu (ESC)

N08810 Stainless Steel vs. EN 1.4852 Stainless Steel

Both N08810 stainless steel and EN 1.4852 stainless steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N08810 stainless steel and the bottom bar is EN 1.4852 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 33
4.6
Fatigue Strength, MPa 160
120
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Tensile Strength: Ultimate (UTS), MPa 520
490
Tensile Strength: Yield (Proof), MPa 200
250

Thermal Properties

Latent Heat of Fusion, J/g 300
330
Maximum Temperature: Corrosion, °C 490
620
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1400
1380
Melting Onset (Solidus), °C 1350
1340
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
13
Thermal Expansion, µm/m-K 14
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
41
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 5.3
6.9
Embodied Energy, MJ/kg 76
100
Embodied Water, L/kg 200
220

Common Calculations

PREN (Pitting Resistance) 21
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
19
Resilience: Unit (Modulus of Resilience), kJ/m3 100
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 3.0
3.4
Thermal Shock Resistance, points 13
11

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0.050 to 0.1
0.3 to 0.5
Chromium (Cr), % 19 to 23
24 to 27
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 39.5 to 50.7
29.6 to 40.9
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 30 to 35
33 to 36
Niobium (Nb), % 0
0.8 to 1.8
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
1.0 to 2.5
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.15 to 0.6
0