MakeItFrom.com
Menu (ESC)

N08810 Stainless Steel vs. EN 1.8895 Steel

Both N08810 stainless steel and EN 1.8895 steel are iron alloys. They have 46% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08810 stainless steel and the bottom bar is EN 1.8895 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 33
26
Fatigue Strength, MPa 160
220
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 340
260
Tensile Strength: Ultimate (UTS), MPa 520
400
Tensile Strength: Yield (Proof), MPa 200
300

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1350
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
49
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.2
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.3
1.6
Embodied Energy, MJ/kg 76
21
Embodied Water, L/kg 200
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
96
Resilience: Unit (Modulus of Resilience), kJ/m3 100
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
14
Strength to Weight: Bending, points 18
15
Thermal Diffusivity, mm2/s 3.0
13
Thermal Shock Resistance, points 13
12

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0.020 to 0.060
Carbon (C), % 0.050 to 0.1
0 to 0.13
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 39.5 to 50.7
97 to 99.98
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 30 to 35
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.15 to 0.6
0 to 0.050
Vanadium (V), % 0
0 to 0.080