MakeItFrom.com
Menu (ESC)

N08810 Stainless Steel vs. C49300 Brass

N08810 stainless steel belongs to the iron alloys classification, while C49300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N08810 stainless steel and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 33
4.5 to 20
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
40
Shear Strength, MPa 340
270 to 290
Tensile Strength: Ultimate (UTS), MPa 520
430 to 520
Tensile Strength: Yield (Proof), MPa 200
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1400
880
Melting Onset (Solidus), °C 1350
840
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 12
88
Thermal Expansion, µm/m-K 14
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
15
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
17

Otherwise Unclassified Properties

Base Metal Price, % relative 30
26
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 5.3
3.0
Embodied Energy, MJ/kg 76
50
Embodied Water, L/kg 200
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 100
220 to 800
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18
15 to 18
Strength to Weight: Bending, points 18
16 to 18
Thermal Diffusivity, mm2/s 3.0
29
Thermal Shock Resistance, points 13
14 to 18

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.75
58 to 62
Iron (Fe), % 39.5 to 50.7
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.5
0 to 0.030
Nickel (Ni), % 30 to 35
0 to 1.5
Phosphorus (P), % 0 to 0.045
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.0 to 1.8
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
30.6 to 40.5
Residuals, % 0
0 to 0.5