MakeItFrom.com
Menu (ESC)

N08810 Stainless Steel vs. C67400 Bronze

N08810 stainless steel belongs to the iron alloys classification, while C67400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08810 stainless steel and the bottom bar is C67400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 33
22 to 28
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
41
Shear Strength, MPa 340
310 to 350
Tensile Strength: Ultimate (UTS), MPa 520
480 to 610
Tensile Strength: Yield (Proof), MPa 200
250 to 370

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
130
Melting Completion (Liquidus), °C 1400
890
Melting Onset (Solidus), °C 1350
870
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 12
100
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
23
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
26

Otherwise Unclassified Properties

Base Metal Price, % relative 30
23
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 5.3
2.8
Embodied Energy, MJ/kg 76
48
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 100
300 to 660
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 18
17 to 22
Strength to Weight: Bending, points 18
17 to 20
Thermal Diffusivity, mm2/s 3.0
32
Thermal Shock Resistance, points 13
16 to 20

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0.5 to 2.0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.75
57 to 60
Iron (Fe), % 39.5 to 50.7
0 to 0.35
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0 to 1.5
2.0 to 3.5
Nickel (Ni), % 30 to 35
0 to 0.25
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0.5 to 1.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
31.1 to 40
Residuals, % 0
0 to 0.5