MakeItFrom.com
Menu (ESC)

N08810 Stainless Steel vs. C68400 Brass

N08810 stainless steel belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08810 stainless steel and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 33
18
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
41
Shear Strength, MPa 340
330
Tensile Strength: Ultimate (UTS), MPa 520
540
Tensile Strength: Yield (Proof), MPa 200
310

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
130
Melting Completion (Liquidus), °C 1400
840
Melting Onset (Solidus), °C 1350
820
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 12
66
Thermal Expansion, µm/m-K 14
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
87
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
99

Otherwise Unclassified Properties

Base Metal Price, % relative 30
23
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 5.3
2.7
Embodied Energy, MJ/kg 76
47
Embodied Water, L/kg 200
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
81
Resilience: Unit (Modulus of Resilience), kJ/m3 100
460
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 18
19
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 3.0
21
Thermal Shock Resistance, points 13
18

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0 to 0.5
Boron (B), % 0
0.0010 to 0.030
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.75
59 to 64
Iron (Fe), % 39.5 to 50.7
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.5
0.2 to 1.5
Nickel (Ni), % 30 to 35
0 to 0.5
Phosphorus (P), % 0 to 0.045
0.030 to 0.3
Silicon (Si), % 0 to 1.0
1.5 to 2.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.5
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5