MakeItFrom.com
Menu (ESC)

N08810 Stainless Steel vs. C85900 Brass

N08810 stainless steel belongs to the iron alloys classification, while C85900 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08810 stainless steel and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 33
30
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 520
460
Tensile Strength: Yield (Proof), MPa 200
190

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
130
Melting Completion (Liquidus), °C 1400
830
Melting Onset (Solidus), °C 1350
790
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
89
Thermal Expansion, µm/m-K 14
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
25
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
28

Otherwise Unclassified Properties

Base Metal Price, % relative 30
24
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 5.3
2.9
Embodied Energy, MJ/kg 76
49
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 100
170
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 18
16
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 3.0
29
Thermal Shock Resistance, points 13
16

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.75
58 to 62
Iron (Fe), % 39.5 to 50.7
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.5
0 to 0.010
Nickel (Ni), % 30 to 35
0 to 1.5
Phosphorus (P), % 0 to 0.045
0 to 0.010
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.015
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7