MakeItFrom.com
Menu (ESC)

N08810 Stainless Steel vs. C95820 Bronze

N08810 stainless steel belongs to the iron alloys classification, while C95820 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08810 stainless steel and the bottom bar is C95820 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 33
15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 520
730
Tensile Strength: Yield (Proof), MPa 200
310

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 1100
230
Melting Completion (Liquidus), °C 1400
1080
Melting Onset (Solidus), °C 1350
1020
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 12
38
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 30
29
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 5.3
3.5
Embodied Energy, MJ/kg 76
56
Embodied Water, L/kg 200
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
86
Resilience: Unit (Modulus of Resilience), kJ/m3 100
400
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 3.0
11
Thermal Shock Resistance, points 13
25

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
9.0 to 10
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.75
77.5 to 82.5
Iron (Fe), % 39.5 to 50.7
4.0 to 5.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.5
0 to 1.5
Nickel (Ni), % 30 to 35
4.5 to 5.8
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.020
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.8