MakeItFrom.com
Menu (ESC)

N08810 Stainless Steel vs. R58150 Titanium

N08810 stainless steel belongs to the iron alloys classification, while R58150 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N08810 stainless steel and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 33
13
Fatigue Strength, MPa 160
330
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
52
Shear Strength, MPa 340
470
Tensile Strength: Ultimate (UTS), MPa 520
770
Tensile Strength: Yield (Proof), MPa 200
550

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1400
1760
Melting Onset (Solidus), °C 1350
1700
Specific Heat Capacity, J/kg-K 480
500
Thermal Expansion, µm/m-K 14
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
48
Density, g/cm3 8.0
5.4
Embodied Carbon, kg CO2/kg material 5.3
31
Embodied Energy, MJ/kg 76
480
Embodied Water, L/kg 200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
94
Resilience: Unit (Modulus of Resilience), kJ/m3 100
1110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
32
Strength to Weight: Axial, points 18
40
Strength to Weight: Bending, points 18
35
Thermal Shock Resistance, points 13
48

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0.050 to 0.1
0 to 0.1
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0 to 0.75
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 39.5 to 50.7
0 to 0.1
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0
14 to 16
Nickel (Ni), % 30 to 35
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.15 to 0.6
83.5 to 86