MakeItFrom.com
Menu (ESC)

N08904 Stainless Steel vs. CC767S Brass

N08904 stainless steel belongs to the iron alloys classification, while CC767S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08904 stainless steel and the bottom bar is CC767S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
86
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 38
34
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 540
430
Tensile Strength: Yield (Proof), MPa 240
150

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1440
840
Melting Onset (Solidus), °C 1390
790
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 12
110
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
32
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
36

Otherwise Unclassified Properties

Base Metal Price, % relative 32
23
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 5.8
2.7
Embodied Energy, MJ/kg 79
47
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
100
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 19
15
Strength to Weight: Bending, points 18
16
Thermal Diffusivity, mm2/s 3.1
34
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.8
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 1.0 to 2.0
58 to 64
Iron (Fe), % 38.8 to 53
0 to 0.5
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 23 to 28
0 to 1.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
32.8 to 41.9