MakeItFrom.com
Menu (ESC)

N08904 Stainless Steel vs. C71500 Copper-nickel

N08904 stainless steel belongs to the iron alloys classification, while C71500 copper-nickel belongs to the copper alloys. They have a modest 28% of their average alloy composition in common, which, by itself, doesn't mean much. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is N08904 stainless steel and the bottom bar is C71500 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Poisson's Ratio 0.28
0.33
Rockwell B Hardness 77
40 to 89
Shear Modulus, GPa 79
52
Tensile Strength: Ultimate (UTS), MPa 540
380 to 620

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 1100
260
Melting Completion (Liquidus), °C 1440
1240
Melting Onset (Solidus), °C 1390
1170
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 12
28
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
4.6
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
4.7

Otherwise Unclassified Properties

Base Metal Price, % relative 32
41
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 5.8
5.1
Embodied Energy, MJ/kg 79
74
Embodied Water, L/kg 200
280

Common Calculations

Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 19
12 to 19
Strength to Weight: Bending, points 18
13 to 18
Thermal Diffusivity, mm2/s 3.1
7.7
Thermal Shock Resistance, points 12
12 to 20

Alloy Composition

Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 1.0 to 2.0
63.5 to 70.6
Iron (Fe), % 38.8 to 53
0.4 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 23 to 28
29 to 33
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.035
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5