MakeItFrom.com
Menu (ESC)

N08926 Stainless Steel vs. ASTM A369 Grade FP91

Both N08926 stainless steel and ASTM A369 grade FP91 are iron alloys. They have 57% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N08926 stainless steel and the bottom bar is ASTM A369 grade FP91.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
19
Fatigue Strength, MPa 290
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 80
75
Shear Strength, MPa 500
410
Tensile Strength: Ultimate (UTS), MPa 740
670
Tensile Strength: Yield (Proof), MPa 330
460

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Mechanical, °C 1100
600
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 12
26
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
10

Otherwise Unclassified Properties

Base Metal Price, % relative 33
7.0
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.2
2.6
Embodied Energy, MJ/kg 84
37
Embodied Water, L/kg 200
88

Common Calculations

PREN (Pitting Resistance) 45
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
110
Resilience: Unit (Modulus of Resilience), kJ/m3 270
560
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 3.2
6.9
Thermal Shock Resistance, points 16
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0 to 0.020
0.080 to 0.12
Chromium (Cr), % 19 to 21
8.0 to 9.5
Copper (Cu), % 0.5 to 1.5
0
Iron (Fe), % 41.7 to 50.4
87.3 to 90.3
Manganese (Mn), % 0 to 2.0
0.3 to 0.6
Molybdenum (Mo), % 6.0 to 7.0
0.85 to 1.1
Nickel (Ni), % 24 to 26
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0.15 to 0.25
0.030 to 0.070
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.5
0.2 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.025
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010