MakeItFrom.com
Menu (ESC)

N08926 Stainless Steel vs. Grade Ti-Pd8A Titanium

N08926 stainless steel belongs to the iron alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N08926 stainless steel and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
13
Fatigue Strength, MPa 290
260
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 740
500
Tensile Strength: Yield (Proof), MPa 330
430

Thermal Properties

Latent Heat of Fusion, J/g 300
420
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1410
1610
Specific Heat Capacity, J/kg-K 460
540
Thermal Conductivity, W/m-K 12
21
Thermal Expansion, µm/m-K 16
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
6.9

Otherwise Unclassified Properties

Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 6.2
49
Embodied Energy, MJ/kg 84
840
Embodied Water, L/kg 200
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
65
Resilience: Unit (Modulus of Resilience), kJ/m3 270
880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 25
31
Strength to Weight: Bending, points 22
31
Thermal Diffusivity, mm2/s 3.2
8.6
Thermal Shock Resistance, points 16
39

Alloy Composition

Carbon (C), % 0 to 0.020
0 to 0.1
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 0.5 to 1.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 41.7 to 50.4
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 24 to 26
0 to 0.050
Nitrogen (N), % 0.15 to 0.25
0
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4