MakeItFrom.com
Menu (ESC)

N08926 Stainless Steel vs. C86300 Bronze

N08926 stainless steel belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N08926 stainless steel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
14
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 740
850
Tensile Strength: Yield (Proof), MPa 330
480

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1460
920
Melting Onset (Solidus), °C 1410
890
Specific Heat Capacity, J/kg-K 460
420
Thermal Conductivity, W/m-K 12
35
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 33
23
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.2
3.0
Embodied Energy, MJ/kg 84
51
Embodied Water, L/kg 200
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
100
Resilience: Unit (Modulus of Resilience), kJ/m3 270
1030
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 25
30
Strength to Weight: Bending, points 22
25
Thermal Diffusivity, mm2/s 3.2
11
Thermal Shock Resistance, points 16
28

Alloy Composition

Aluminum (Al), % 0
5.0 to 7.5
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 0.5 to 1.5
60 to 66
Iron (Fe), % 41.7 to 50.4
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
2.5 to 5.0
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 24 to 26
0 to 1.0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0