MakeItFrom.com
Menu (ESC)

N09777 Nickel vs. 295.0 Aluminum

N09777 nickel belongs to the nickel alloys classification, while 295.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N09777 nickel and the bottom bar is 295.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 39
2.0 to 7.2
Fatigue Strength, MPa 190
44 to 55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 400
180 to 230
Tensile Strength: Ultimate (UTS), MPa 580
230 to 280
Tensile Strength: Yield (Proof), MPa 240
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
530
Specific Heat Capacity, J/kg-K 460
880
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 38
10
Density, g/cm3 8.1
3.0
Embodied Carbon, kg CO2/kg material 7.4
7.9
Embodied Energy, MJ/kg 100
150
Embodied Water, L/kg 200
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
5.2 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 140
77 to 340
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 20
21 to 26
Strength to Weight: Bending, points 19
27 to 32
Thermal Shock Resistance, points 16
9.8 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.35
91.4 to 95.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 14 to 19
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 28.5 to 47.5
0 to 1.0
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 34 to 42
0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.7 to 1.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 2.0 to 3.0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15