MakeItFrom.com
Menu (ESC)

N09777 Nickel vs. 7108 Aluminum

N09777 nickel belongs to the nickel alloys classification, while 7108 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N09777 nickel and the bottom bar is 7108 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 39
11
Fatigue Strength, MPa 190
120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 400
210
Tensile Strength: Ultimate (UTS), MPa 580
350
Tensile Strength: Yield (Proof), MPa 240
290

Thermal Properties

Latent Heat of Fusion, J/g 300
380
Maximum Temperature: Mechanical, °C 960
210
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1390
530
Specific Heat Capacity, J/kg-K 460
880
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 38
9.5
Density, g/cm3 8.1
2.9
Embodied Carbon, kg CO2/kg material 7.4
8.3
Embodied Energy, MJ/kg 100
150
Embodied Water, L/kg 200
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
38
Resilience: Unit (Modulus of Resilience), kJ/m3 140
620
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 20
34
Strength to Weight: Bending, points 19
38
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 0 to 0.35
92.4 to 94.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 14 to 19
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 28.5 to 47.5
0 to 0.1
Magnesium (Mg), % 0
0.7 to 1.4
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 34 to 42
0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 2.0 to 3.0
0 to 0.050
Zinc (Zn), % 0
4.5 to 5.5
Zirconium (Zr), % 0
0.12 to 0.25
Residuals, % 0
0 to 0.15