MakeItFrom.com
Menu (ESC)

N09777 Nickel vs. EN 1.4035 Stainless Steel

N09777 nickel belongs to the nickel alloys classification, while EN 1.4035 stainless steel belongs to the iron alloys. They have 52% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is N09777 nickel and the bottom bar is EN 1.4035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
18
Fatigue Strength, MPa 190
250
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 400
430
Tensile Strength: Ultimate (UTS), MPa 580
690
Tensile Strength: Yield (Proof), MPa 240
400

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Mechanical, °C 960
760
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1390
1390
Specific Heat Capacity, J/kg-K 460
480
Thermal Expansion, µm/m-K 13
10

Otherwise Unclassified Properties

Base Metal Price, % relative 38
7.0
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 7.4
2.0
Embodied Energy, MJ/kg 100
27
Embodied Water, L/kg 200
100

Common Calculations

PREN (Pitting Resistance) 30
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
420
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 19
22
Thermal Shock Resistance, points 16
25

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Carbon (C), % 0 to 0.030
0.43 to 0.5
Chromium (Cr), % 14 to 19
12.5 to 14
Iron (Fe), % 28.5 to 47.5
82.1 to 86.9
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 34 to 42
0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0.15 to 0.35
Titanium (Ti), % 2.0 to 3.0
0