MakeItFrom.com
Menu (ESC)

N09777 Nickel vs. EN AC-42200 Aluminum

N09777 nickel belongs to the nickel alloys classification, while EN AC-42200 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N09777 nickel and the bottom bar is EN AC-42200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 39
3.0 to 6.7
Fatigue Strength, MPa 190
86 to 90
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 580
320
Tensile Strength: Yield (Proof), MPa 240
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 300
500
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1440
610
Melting Onset (Solidus), °C 1390
600
Specific Heat Capacity, J/kg-K 460
910
Thermal Expansion, µm/m-K 13
22

Otherwise Unclassified Properties

Base Metal Price, % relative 38
9.5
Density, g/cm3 8.1
2.6
Embodied Carbon, kg CO2/kg material 7.4
8.0
Embodied Energy, MJ/kg 100
150
Embodied Water, L/kg 200
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
9.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 140
410 to 490
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 20
34 to 35
Strength to Weight: Bending, points 19
40 to 41
Thermal Shock Resistance, points 16
15

Alloy Composition

Aluminum (Al), % 0 to 0.35
91 to 93.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 14 to 19
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 28.5 to 47.5
0 to 0.19
Magnesium (Mg), % 0
0.45 to 0.7
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 2.5 to 5.5
0
Nickel (Ni), % 34 to 42
0
Niobium (Nb), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
6.5 to 7.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 2.0 to 3.0
0 to 0.25
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1